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Abstract

Two-dimensional numerical simulations are carried out in the present paper to investigate the vortex-shedding features
in the wake of a fully-submerged hydrofoil translating with a positive angle of attack beneath a free surface. The present
numerical method is a finite element projection procedure, which can tackle realistic configurations and easily
implement the fully-nonlinear free-surface boundary conditions, Extensive numerical experiments provide details of the
trailing vortices in a laminar free-surface flow. Through parametric studies of the computational results, a universal and
continuous Strouhal-Reynolds-Froude-number relationship is proposed. Various interesting and unique characteristics
of the trailing vortices under the influence of a free surface are found and discussed in detail.

1. Introduction

The transformation between kinetic and potential
energies and the coexistence of viscous, gravity and
surface-tension forces at an unknown wavy boundary
make the free-surface phenomena difficult to study.
Wave signatures are known to be caused by the
interaction between the vortex-induced wake behind a
moving object and a deformable air-water interface,
responsible for some interesting vortex behaviors, such
as the vortex rebounding, rollers at wave crests,
creation of secondary eddies with mass and momentum
transport, straight and sharp surface depression labeled
as scars and striations, and the wave resonance due to
jet attachment to the free surface (Sheridan e al.,
1997). A better understanding of these flow behaviors
is fundamental to ocean engineering and undersea
technology. However, the physics of flow structures
and the free-surface interaction, especially the Karmén
vortex street beneath a free surface, remains elusive
due to the complexity in devising and using
mathematical formulations, numerical schemes and
physical experiments (Sarpkaya, 1996). Available
experiments have shown that the trailing vortices can
become inherently unstable to centrifugal and helical
disturbances and to the existence of a wake-like or jet-
like velocity profile. The primary vortices may also
rebound due to shear and small eddies at the free
surface (Ohring & Lugt, 1991). Recently, Zhang et al.
(1999) investigated the mechanism of vortex
connection near a free surface in a three-dimensional
numerical wave tank, They confirmed the viscous and
blockage double sublayers beneath the free surface.
Their numerical method was further extended by Shen
el al (1999) to directly simulate the surface-layer
formation in free-surface turbulent flows. Systematic
computations indicated that the blockage layer results
from the kinematic boundary condition at the free
surface, and the viscous surface layer is caused by the

dynamic stress-free conditions. By visualizing the
wakes of a flow past a cylinder close to the free
surface, Sheridan er al. (1997) experimentally studied
the wake instability, the Froude-number effect, the free-
surface distortion, and the vorticity flux from the free
surface and the cylinder surface. They conjectured that
the localized separation or complete separation from
the free surface is responsible for the generation of a
vorticity layer from the free surface.

There exists a similarity of trailing-wake
structures in flows between a body close to a wall and a
fully-submerged body adjacent to a free surface. In
terms of blockage, a free swrface is indeed a material
boundary. Nevertheless, the curvature of, and the free
traction at, the free surface make the latter scenario
even more complicated. The central interest of the
present work lies in the study of the generation of
trailing vortices in the wake of a fully submerged
hydrofoil. By monitoring the alternation behaviors of a
trailing wake, the free-surface effect on the flow
structure is systematically examined in the numerical
experiments, involving substantial combinations of
Reynolds and Froude numbers. Fhis parametric study
reveals some very unique and interesting features of the
trailing vortices in the presence of a free surface.

2. Description of the flow problem

Let us consider & fully submerged hydrofoil in a
uniform flow, and focus on the free-surface influence
on the entire flow structure, particularly on the trailing
vortices. In a two-dimensional Cartesian reference
frame x = {x, ¥} with x-axis in the uniform flow
direction on the mean free surface and the y-axis
pointing vertically upward, the incompressible Navier-
Stokes and centinuity equations are
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where the hydrodynamic pressure P = p + y/Fr’ is the
total pressure p minus the hydrostatic pressure, u = (u,
v) is the velocity and ¢ is the time,

Fr = Up(gL)"* and Re = pUyL/ 1

are the Froude and Reynolds numbers respectively,
based on a characteristic length L. a reference velocity
Uj,, the molecular viscosity (4, the gravitational
constant g and the fluid density o p is non-
dimensionalized by pUy” .

The governing equations are to be solved subject
to the following boundary conditions: (a) essential
Dirichlet type of specified velocity on solid surfaces
(no-slip} and inlet (incident free-stream) I'} and (b)
natural Neumann type of prescribed traction vector at
open boundaries (traction free) I'; truncated far enough
from the region concerned and at a time-dependent free
surface I['; defined by y = &(x, 1),
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Here, 6 = Re '[Vu + (Vu)"] is the deviatoric stress, T is
the identity tensor, superscript “T” denotes the
transposed tensor and % is the free-surface elevation. n
= (n,, ny) is the outward unit vectors normal to the
surfaces. The fact that no fluid particle leaves the free
surface provides additionally the kinematic boundary
condition

h+uh,=v only. (5

Meanwhile, the traction is no longer free if the external
free-surface tension g is appreciable: ¢ = gn. Assuming
that g is proportional to the interface curvature

= b (14 B,

we have
g=We'xy

where We = pUy*L/y is the Weber number, y being the
coefficient of surface tension. Dynamic condition {4)
at Ty also implies the relation (%, = u-n)
2 Bu,
Re on

(p+qly, = (6)

3. Numerical method
Using the second-order Crank-Nicolson time
integration, the projection finite element procedure

turns equations (1) and (2) into an uncoupled system of
equations as

Mu* = Mu” - GO” — Af[(C + Re ' Kyu-F1"*V?2 (7)
Ko™ =GT .u*+B, (8)
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where @ = AtP / 2 and u* is an intermediate velocity.
Superscripts “a+1” and “#” refer to the current and
previous time levels, A¢ is the time increment,
superscript “e” denotes the averaged values taken at
element centroids and the coefficient matrices are

M= I‘P‘I‘Tdﬂ, G = J.\PV‘PTa’Q,
Q Q

K- IV‘P-V‘PTdQ, C=(u-ut) €.
Q

K is the Laplacian matrix and G the gradient matrices.
The nonlinear convective matrix C has been modified
to incorporate the mesh velocity

uf =" - X"/ A

since the mesh has to be adaptive to the change of
topology. To keep the procedure efficient, the
consistent mass matrix M is lumped onto the diagonals
and penalized to impose the essential boundary
condition (3). Equations (7) and (8) are weak
formulations contain boundary integrais F and B by
which the free-surface viscous and capillary effects are
incorporated as
Fo (LB,
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Equation (8) is also subject to the Dirichlet-type
dynamic free surface constraint from (6),
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The data structure and solution strategy follow from
Chen (1999). Fully nonlinear kinematic boundary
condition (5) is implemented to update the free surface
in a time-marching manner. To keep the global
second-order accuracy in time, the Crank-Nicolson
finite difference scheme is adopted while the
convective term is treated with the third-order upwind
scheme. Artificial damping is wused at the
up/downstream open boundaries for outgoing waves.
Details of the free-surface updating scheme and the
mesh adaptation were described by Chen & Chwang
(20004).

4, Numerical experiments

The present numerical formulation was validated by
comparing its results with experimental measurements
of Duncan (1983) for a fully submerged NACAO0012
hydrofoil with chord length Z in a uniform flow (Chen
& Chwang, 2000b). The depth of submergence s
=1.034 is measured at the mid-chord and the angle of
attack is @ = 5°. No bottom effect is considered. The
coefficient of free-surface tension is fixed at We =



1,784 for all the cases. Figure 1 shows the
computational domain x (-6.5, 10.0) and y (-4.0, &),
and the mesh division. The grid efficiency of an
unstructured mesh is obvious. The time increment is Az
= 0.002. To be more representative of the flow
physics, the submergence-based Froude number Fr =
Uy/(2s)'" is herginafter adopted.

Figures 2(a, b, ¢, d) show respectively the
instantaneous contours of velocity components (u, v),
hydrodynamic pressure P and vorticity @ for the case
indicated in the figure caption. The vorticity with
strenigth (@ | 2 0.5 is flooded with light and dark colours
for negative and positive vortices (&, ) respectively.
For moderately high Reynolds number laminar flows,
the Kdrman vortex street demonstrates periodical
alternation with respect to the mean flow direction in a
quasi-steady manner. The whirled low pressure spots
locate the vortex centres.

The free-surface effect on the trailing vortices is
studied by analyzing the dependence of the frequency
_at which vortices are shed in a Kérman vortex street on
both the viscous and gravity effects. Velocity signals
shown in Figure 3 are recorded at a typical near-wake
sampling point 1.5L downstream of the trailing edge.
A large number of cases is computed and the Strouhal
numbers (St = f; L/Uj) are obtained by spectral analysis
using the Fourier Transformation of the wake velocity
fluctuations (frequency accuracy Af = 0.01, time
integration interval ¢ = 12.0 ~ 26.0). Predominant
vortex-shedding Strouhal frequencies are detected with
their harmonics in the spectra. The Strouhal number
increases with the Reynolds number and matches very
well the Si-Re relationship suggested by Williamson
(1988) based on experiments of laminar flows past a
circular cylinder without a free surface,

St=A,/Re+ A, + AsRe . (n

However, the original coefficients 4, = —3.3265, A4, =
0.1816 and 4; = 1.6x10™* need to be modified due to
the change of geometry, and are apparently functions of
Froude number in the present free-surface flow. After
data analysis, we propose a universal and continuous
St-Re-Fr relationship for the laminar vortex shedding
behind a NACAO00I2 hydrofoil in a free-surface flow,
in which A4; (i = 1-3) are revised empirically by

A; = B, exp(BFr®) + C; exp(BF+ ), 12y

with & = 6 and # = —0.052. Regression by the least
squares method produces coefficients B; and C; as
tabulated in Table t. Figures 4 (a, b) compare the
proposed formula with the computational data for
isolated Froude and Reynolds numbers, respectively.
The relative mean accuracy of formulae (11) and (12)
is

e=[ (St Steompu) >/ 28t P =4.5x 107

for all the computations. It is worth to mention that
formulae (11) and (12) are only valid for purely
laminar flows and no breaking waves on the free
surface.

Table 1. Coefficients B, and C, for a NACA0012
hydrofoil in a free-surface flow

i 1 2 3

B —1688.142 1.986 2.886%107°
C | —2336.763 0.855 —-4.507x10°°

The dependence of 4; on Froude number strongly
exhibits the correlation of the viscosity and gravity in
the shed trailing vortices. It is of particular interest to
note from Fig. 4a that the Si-Re curves cross each other
at a critical Reynolds number (Re = 2850). Via
extrapolation, one may also obtain the minimum
Reynolds number at which the regular Kdrman vortex
street can be observed (Re = 850, 1000 and 1100 for Fr
= 0.0, 0.5578 and 0.6097 respectively with St = 0.0).
This explains a very important scenario of the free-
swiace flow that & higher Froude number will result in
a later onset of vortex shedding. This conjecture is
strongly supported by the experiments of Sheridan ez
al. (1995). They found that the presence of a free
surface  allows  small-scale  Kelvin-Helmholtz
instabilities to occur, but inhibits the onset of Karman
instability. However, once the Kirmén instability has
been triggered and Reynolds number has exceeded this
critical value, it is clearly shown that a higher Froude
number will always lead to a faster vortex-shedding
frequency in laminar flows.

In addition, remarks can be drawn readily from
the S+-Fr curves in Fig. 4b about the Froude number
effect on the shedding frequency. The Strouhal number
decays following roughly a power law by an index
larger than 6.0 when Fr < 0.45. Therefore, as far as the
vortex alternation is concerned, the free-surface effect
can virtually be ignored for all Reynolds numbers with
Fr<045. For 0.5 < Fr £0.75, the Strouhal number is
almost linearly proportional to the Froude number. By
dropping the first term in (12), the slope & can be
roughly calcutated from (11)and { 12) as

k=C(1+ dexp(-1/a—1)/ Frle 3.66C, (13)
where
C(Rey=C,/Re+ Cy3+ C3 Re, (14)

and Fr' denotes the turning point of the S2-Fr curves at
which the second derivative vanishes,

1
' =[ﬁj“ =0.5954 . (15)
I+a

The tangent lines are shown in Fig, 4b by the dotted
lines for relevant Reynolds numbers. It is noted that &
increases slightly with increasing Reynolds number but
is independent of Froude number. Equation (12)
indicates that as Fr — o yet the flow remains laminar
and no wave breaking (though these requirements can
hardly be met in the present problem), the free-surface
effect will also disappear. The present formulae also
imply that after the Froude number exceeds a threshold
value, the Strouhal number starts to decrease as
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Figure 1. Computational domain and mesh division (total nodes=15,324, total
element = 15,076, free-surface nodes = 209 and body-surface elemenis = 184)
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Figure 2. Instantaneous field variable contours at t=25.0, Re="1x10", Fr=0.6097, We=1,784



expected, and converges to a new level lower than that
for the Fr= 0 case,

Strr = C(Re) < B(RE) = Stio.

5. Conclusions

The present numerical experiments have preliminarily
revealed some interesting and unique effect of the free
surface on the trailing vortex shedding. A umiversal
and continucus St-Re-Fr relationship for the laminar
vortex shedding in a free-surface flow is proposed
based on computations. It is found that the presence of
a free surface allows small-scale Kelvin-Helmholtz
instabilities to occur, but inhibits the onset of Karmén
instability. However, once the Kdrmén instability has
been excited and the Reynolds number exceeds a
critical value, a higher Froude number will always lead
to a higher vortex-shedding frequency in laminar flows.
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Figure 3. Velocity siganls racorded at a sampling point
1.5L downstream of the trailing edge
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Figure 4. St-Re-Fr relationship for the vortex shedding
behind a NACA0012 hydrofail in a free-surface laminar flow






